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Abstract

The global pandemic of coronavirus disease 2019 (COVID-19) is associated with the development of acute 

respiratory distress syndrome (ARDS), which requires ventilation in critically ill patients. The 

pathophysiology of ARDS results from acute inflammation within the alveolar space and prevention of 

normal gas exchange. The increase in proinflammatory cytokines within the lung leads to recruitment of 

leukocytes, further propagating the local inflammatory response.

A consistent finding in ARDS is the deposition of fibrin in the air spaces and lung parenchyma. COVID-19 

patients show elevated D-Dimers and fibrinogen.  Fibrin deposits are found in the lungs of patients due to 

the dysregulation of the coagulation and fibrinolytic systems.  Tissue factor (TF) is exposed on damaged 

alveolar endothelial cells and on the surface of leukocytes promoting fibrin deposition, while significantly 

elevated levels of plasminogen activator inhibitor 1 (PAI-1) from lung epithelium and endothelial cells 

create a hypofibrinolytic state.

Prophylaxis treatment of COVID-19 patients with low molecular weight heparin (LMWH) is important to 

limit coagulopathy. However, to degrade pre-existing fibrin in the lung it is essential to promote local 

fibrinolysis.  In this review, we discuss the repurposing of fibrinolytic drugs, namely tissue-type 

plasminogen activator (tPA), to treat COVID-19 associated ARDS. tPA is an approved intravenous 

thrombolytic treatment, and the nebulizer form has been shown to be effective in plastic bronchitis and is 

currently in Phase II clinical trial. Nebulizer plasminogen activators may provide a targeted approach in 

COVID-19 patients to degrade fibrin and improving oxygenation in critically ill patients.
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Introduction

In early December 2019 multiple cases of pneumonia of unknown aetiology were reported in Wuhan, 

Hubei province, China [1-3].  In January 2020 the World Health Organisation declared that this was caused 

by a new type of Coronavirus, (SARS-CoV-2).  The spread of SARS-CoV-2 has been exponential resulting in 

a global pandemic with more than two million confirmed cases.  While most people with COVID-19 

develop only mild illness, characterised by a fever and continuous cough [2], approximately 14% develop 

severe disease that requires hospitalisation and oxygen support and 5% require admission to intensive 

care.  COVID-19 patients with respiratory distress present primarily with severe hypoxemia, yet 

respiratory system compliance can vary from near normal to exceptionally low [4].   In severe cases, 

patients with COVID-19 develop a type of acute respiratory distress syndrome (ARDS), sepsis and multi-

organ failure.  Older age and co-morbidities are associated with higher mortality [5].

A hallmark of ARDS is increased alveolar-capillary permeability triggered by exudation of fluid rich in cells 

and plasma proteins, including albumin, fibrinogen, proinflammatory cytokines and coagulation factors [6, 

7] (Figure 1). This leads to recruitment of inflammatory leukocytes, including neutrophils[8] alveolar 

macrophages [9], monocytes and platelets, which propagate the local inflammatory response [10]. Fibrin 

deposition in the air spaces and lung parenchyma, are consistently observed with ARDS and contributes to 

hyaline-membrane formation and subsequent alveolar fibrosis [11-14].  This promotes the development 

and progression of respiratory dysfunction and right heart failure [15] .  Fibrin deposition is the net result 

of an alteration in the balance of the coagulation and fibrinolytic pathways, and several therapeutic 

strategies have been explored to target the dysfunction of these systems in ARDS [16-19]. Recent case 

studies describe fibrin deposits in biopsies of lung tissue from patients with COVID-19 [20, 21], with ARDS 

commonly reported [22, 23]. Consistent with this large numbers of infiltrating immune cells have been 

found in COVID-19 positive lung tissues, particularly monocytes and macrophages, [21, 23-25] alongside 

the formation of fibrin, [15, 21, 25] proteinaceous hyaline membranes and pulmonary fibrosis [24, 25]. CT 

scans of COVID-19 patient’s lungs reveal characteristic ground glass opacities (GCO), indicating partial 

filling of the bronchoalveolar airspace with exudate [26, 27]. The timing of the accidental sampling in the 

COVID-19 patients with lung cancer suggests these early fibrin lung depositions present prior to clinical 

symptoms of pneumonia [21].  Therefore, biomarkers to allow early identification of these changes would 

be highly beneficial in early diagnosis and timely treatment of COVID-19 patients.  This review will focus 

on the molecular mechanisms and role of inflammatory cells in underpinning fibrin deposition and 

persistence in the lungs of critically ill COVID-19 patients and discuss potential therapeutic strategies to 

help support these patients.A
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The inflammatory response in ARDS

Sequestration of leukocytes, particularly neutrophils, within the microvasculature of the lung is central to 

the development of ARDS, leading to a massive insult to the alveolar-capillary membrane, unrestricted 

inflammation and microthrombus formation (reviewed by [28]). Neutrophils, resident alveolar 

macrophages and monocyte-derived macrophages, as well as recruited monocytes, infiltrate the lungs, 

enhance lung injury, and play a key role in the pathogenesis of ARDS [29-32]. Release of proinflammatory 

cytokines, including macrophage inflammatory protein 2 (MIP-2), interleukin 8 (IL-8), interleukin-6 (IL-6), 

interleukin-10 (IL-10) and tumour necrosis factor  (TNF-), encourage ongoing infiltration of immune 

cells from the intravascular compartment to the alveolar airspaces [33-35]. Indeed, these 

proinflammatory cytokines are used as biomarkers of ARDS and have been suggested to be important in 

progression of COVID-19 associated ARDS [28].

Accumulation of coagulation factors in the lungs can also drive ARDS through the activation of protease-

activated receptors (PARs) which are expressed on cells in the lungs including alveolar epithelial cells, 

fibroblasts, monocytes and macrophages [36, 37].  PAR signalling induced by tissue factor, coagulation 

factor Xa, factor VIIa or thrombin can augment fibrosis in addition to driving fibrin generation.  Fibrosis is 

characterised by fibroblast migration, proliferation and deposition of collagen in the intra-alveolar spaces.  

PAR-1 can be acted upon in fibroblasts by both thrombin and factor Xa to promote their proliferation, 

induce production of pro-collagen and amplify expression of various growth factors including connective 

tissue growth factor (CTGF) [38, 39]. PAR signalling can enhance inflammation in acute lung injury (ALI) by 

increasing the expression of pro-inflammatory cytokines, including IL-6 [40], IL-8, [41-43]  and platelet 

derived growth factor [44].

Accumulation of neutrophils in the lungs further contributes to the pathophysiology of ARDS [28].  

Neutrophils release their DNA alongside their nuclear and cytoplasmic contents into the extracellular 

environment during the cell death process, NETosis. These web like cellular extrusions, termed neutrophil 

extracellular traps (NETs) form a scaffold of chromatin decorated with cytoplasmic and granule proteins 

and histones.  NETs play a role in the fight against invading pathogens. However, if not tightly regulated, 

NETs can contribute to the pathogenesis of non-infectious diseases where they can exacerbate 

coagulation and inflammation [45] and have recently been reported as a contributing player in the 

pathogenesis of ARDS and ALI where they cause further damage to the lungs [46, 47].  NET production has A
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been identified in the lungs during ARDS, where levels of NETs are greatly increased in the 

bronchoalveolar lavage (BAL) of both ARDS patients and mouse models of induced ALI and ARDS [46, 48-

50]. Increased NETs correlate with the severity of ARDS [46, 49] and disease severity is reduced in mouse 

models when NETs are degraded using DNase1 [46].  

Dysregulation of Coagulation and Fibrinolysis in ARDS

A hypercoagulable state exists in the lungs of ARDS patients, leading to the deposition of fibrin in the 

intra-alveolar space [51] (Figure 1). Inflammation modulates coagulation by activating C-reactive protein 

(CRP), thereby augmenting tissue factor exposure on monocytes and alveolar macrophages [52, 53] which 

in turn promote thrombin generation and deposition of fibrin.  Hepatic synthesis of fibrinogen, an acute 

phase protein, is increased 2-10-fold in plasma during infection [54] and local synthesis in the lung 

epithelium is evident during pneumonia [55] thereby further exacerbating fibrin deposition.  Fibrin 

deposition augments inflammation and fibrosis as well as damaging lung surfactant [50, 56, 57].

This is coupled with a hypofibrinolytic state in the alveolar space, where fibrinolytic inhibitors have been 

shown to be elevated.  Levels of thrombin activatable fibrinolysis inhibitor  (TAFI) and protein C inhibitor 

were found to be significantly elevated in the bronchoalveolar fluid of patients with interstitial lung 

disease when compared to healthy controls [58]. Furthermore, it has been reported that α2-macrogloblin 

levels are increased in obstructive lung disease, which may correlate with the increase in plasminogen 

observed in the BAL of ARDS patients [59, 60]. However, the principal fibrinolytic inhibitor described in 

the pathogenesis of ARDS is plasminogen activator inhibitor 1 (PAI-1), which is known to be elevated in 

severe acute respiratory syndrome coronavirus (SARS-CoV) and ALI [11, 61].

In ARDS, CRP promotes local release of PAI-1 from endothelial cells[62, 63].  Additionally, infiltration of 

platelets, the major circulating pool of PAI-1, may result in local release.  We have recently shown that a 

significant amount of this active PAI-1 remains associated with the stimulated platelet membrane [64, 65].  

Elevated levels of PAI-1 in ARDS depresses urokinase (uPA) activity in the bronchoalveolar fluid [11].  

Attenuation of the plasminogen activation system leads to abnormal turnover of fibrin in the alveolar 

space.  Plasma PAI-1 levels have been reported as an independent risk factor for poor prognosis and 

mortality in ALI [60, 62, 63, 66-69].  Prabhakaran et al [62] reported a significant increase in PAI-1 antigen 

and activity in plasma and the edema fluid in ALI, with evidence of significant pulmonary production [62].  

A clear role for PAI-1 as a prognostic marker in ARDS was confirmed by a prospective observational study A
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which demonstrated 5-fold higher levels in patients who progressed to ARDS than those with 

uncomplicated aspiration pneumonitis (2687 vs. 587 ng/ml, respectively) [68].

Importantly, a hypofibrinolytic state and increased PAI-1 was observed in the SARS-CoV epidemic in 2002 

and 2003 [61].  Gralinski et al used a non-biased systems biology approach to study the dysfunctional 

fibrinolytic pathway in an infection model of SARS-CoV [61].  Fibrin persistence was mediated by over-

expression of PAI-1 which overcomes local uPA and tissue-type plasminogen activator (tPA) [61].  SARS-

CoV infected cells contain high levels of TGF-β1, which in turn stimulates expression of extracellular 

matrix protease inhibitors, including PAI-1 [70] which has been specifically linked to ARDS induced by 

SARS-CoV [71].  These studies illustrate a clear role for PAI-1 in the aetiology of ARDS and suggest it is a 

key protein contributing to abnormal turnover of fibrin in the alveolar space.

Plasma PAI-1 has been reported as a potential biomarker for predicting disease progression in ALI to 

ARDS, with one study concluding that PAI-1 antigen > 640 ng/ml was a 100 % positive predictor for 

mortality [62].  Similar pathology of fibrin depositions in the lungs has been identified in COVID-19 [21, 

25], suggesting PAI-1 may be a useful prognostic marker for patients at risk of developing ARDS and thus 

requiring critical care and ventilation.

Therapeutic options for ARDS in COVID-19 patients

A common finding with COVID-19 patients requiring hospitalisation is increased levels of D-dimers and 

and fibrin degradation products (FDP) which are associated with a higher risk of mortality [72].  

Prothrombin time and activated partial thromboplastin time show a mild elongation [72].  Coupled with 

the fact critically ill COVID-19 patients will be immobilised, there is an increased risk of hospital-associated 

venous thromboembolism (VTE) [73].   These findings have led to a recent recommendation for 

prophylactic anticoagulant therapy with low molecular weight heparin (LMWH) for patients hospitalised 

with COVID-19, without contraindications, to limit the extent of the coagulopathy [74, 75].  Heparin 

treatment (both unfractionated and LMWH) reduces inflammatory biomarkers [76], and therefore may be 

beneficial in reducing the inflammatory state in COVID-19.  Disseminated intravascular coagulation (DIC) is 

often observed in patients with ARDS where fibrin and microthrombi are detected in the lungs [12] and 

BAL [60].  Consistent with this, numerous patients infected during the SARS-CoV epidemic in 2002-2003 

displayed DIC [77] and elevated levels of fibrinogen [78] and D-dimers [79].
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Anticoagulant therapy is essential to limit ongoing fibrin deposition and microthrombi formation in ARDS 

and treat the systemic prothrombotic complications in these patients.  However, LMWH will be ineffective 

in clearing fibrin clusters deposited in the alveolar space.  There is therefore a requirement to readdress 

the balance of fibrinolysis in the lung, either by enhancing plasminogen activation or downregulating 

fibrinolytic inhibitors.  The significant increase in PAI-1 in ARDS and ALI curtails local uPA, but also tPA, 

activity [11, 17, 80, 81].  In a pig model of trauma, administration of tPA or uPA prevented development of 

ARDS, with animals displaying normal PaO2 [82].  A phase 1 clinical trial revealed a significant 

improvement in PaO2 at 24 hours in 19 out of 20 patients with severe ARDS secondary to trauma or sepsis 

following administration of uPA or streptokinase [83, 84].   These patients had a PaO2 of less than 60 

mmHg, usually considered fatal, which increased to 231.5 mmHg following thrombolytic therapy with an 

overall 30 % survival rate and no incidence of bleeding [84].  The use of tPA to treat ARDS in COVID-19 

patients has recently been proposed by Moore et al [15].  An initial case report from 3 patients from the 

current SARS-CoV-2 pandemic, demonstrates a transient improvement in P/F ratio in 2 cases and 

sustained 50 % improvement in 1 case following administration of a 25 mg bolus of intravenous tPA 

followed by a further 25 mg infusion [85].  The authors suggest that there is a precedent for increasing the 

dose of the bolus of tPA whilst maintaining heparin infusion, as the anticoagulant is effective against sub-

massive pulmonary embolism [85, 86]. In addition to readdressing the fibrinolytic balance, administration 

of tPA to ARDS patients may confer anti-inflammatory effects, as it has been shown to suppress 

neutrophil activation in a rat model of ALI induced by IL-1α [87].

A major consideration in anticoagulant or thrombolytic therapy is the undesirable complication of 

bleeding.  In respiratory medicine, treatments are often delivered as aerosolised protein therapeutics as 

diffusion of proteins from the blood to the lungs can be limited [88].  Interestingly, nebulised 

anticoagulant therapy with antithrombin or heparin has been shown to reduce lung injury without an 

increase in systemic bleeding in animal models [89-91] and ALI patients [92]. However, as discussed, 

heparin will prevent further fibrin deposition but will be ineffective in the removal of pre-existing fibrin.  A 

recent publication compared the efficacy of the nebulised form of the plasminogen activator, 

streptokinase and nebulised heparin in the treatment of ARDS [93].  The primary outcome in this trial was 

the change in PaO2/FIO2 ratio, which was significantly higher in the streptokinase group from day 1 to day 

8, compared to the heparin and standard-of-care groups.  Importantly, ICU mortality was significantly 

lower in streptokinase patients compared to other groups [93].  A 1999 case report [94] describes a young 

woman with ARDS who was resistant to conventional therapeutics and was treated with nebulised and 

intravenous tPA, followed by continuous treatment with nebulized unfractionated heparin. The patient A
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stabilized following fibrinolytic treatment and demonstrated a significant enhancement in pulmonary gas 

exchange.  

Plastic bronchitis is a condition that can develop from several respiratory disorders, resulting in casts of 

compacted mucous that have been shown to contain fibrin [95]. Plastic bronchitis is primarily observed in 

children and has been described in cases of influenza A (H1N1) [96, 97] and human bocavirus [98].    

Nebulised tPA has been shown to be effective in preventing recurrent cast formation in plastic bronchitis 

[95].  Reports thus far are from single case studies, however, there is an ongoing phase II clinical trial of 

nebulised tPA (PLATyPuS; alteplase, NCT02315898) for treatment of plastic bronchitis.  These data clearly 

indicate that use of nebulised fibrinolytics could allow a more targeted approach to correct the 

haemostatic imbalance that results in fibrin deposition, while limiting the risk of systemic activation of 

fibrinolysis that may trigger unwanted bleeding (Figure 2).  Inhaled tPA is absorbed into the vasculature 

thus increasing fibrinolytic capacity in the plasma [99] and the potential to lyse the microthrombi 

observed in COVID-19 patients.  However, it is conceivable that intravenous infusions of tPA may be 

necessary to disperse larger thrombi in the circulation.  A potential caveat of a nebulizer formulation is 

that aerosolised proteins are susceptible to degradation so the formulation and excipient used must be 

considered [88].  However, in the case of tPA, an extreme advantage is that a formulation of nebulised 

Alteplase has been developed and is currently being tested in a Phase II clinical trial [88]. 

Concluding remarks

The COVID-19 global pandemic has necessitated a demand for novel therapeutics to limit the 

complications of ARDS and/or reduce the burden on ventilatory support in intensive care units.  The 

indication that fibrin deposits occur prior to symptoms [21] of the disease, suggests that targeting the 

fibrinolytic system to promote fibrin resolution could limit severity and improve pulmonary function.  

Given the urgent time scale of the clinical requirement, repurposing of existing therapies, such as 

nebulised tPA, to promote fibrin dissolution in the lung and improve oxygenation is a pragmatic approach 

in addressing the ARDS complications associated with COVID-19.
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Figure Legends

Figure 1 – Development of fibrin deposits in the alveolar space.  Development of ARDS is characterised 

by the recruitment of inflammatory leukocytes, including neutrophils, macrophages and monocytes to the 

pulmonary vasculature and alveolar air space. This leads to a massive insult in the alveolar-capillary 

membrane and exudation of fluid rich in cells and plasma proteins, including coagulation factors and 

fibrinogen. Damage to the endothelial membrane and pulmonary vasculature allows accumulation of 

coagulation factors within the alveoli. Tissue factor (TF) exposed on the surface of damaged endothelial 

cells and on the surface of macrophages and monocytes promotes fibrin formation. High levels of tissue 

necrosis factor β1 (TNF-β1) activate neutrophils to form neutrophil extracellular traps (NETs) and amplify 

TF exposure on the surface of macrophages and monocytes. Elevated plasminogen activator inhibitor 

(PAI-1) expression on the surface of monocytes and macrophages prevents degradation of fibrin deposits 

by inhibiting tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA). 

Figure 2 – Fibrin deposition in the lungs during ARDS and breakdown by nebulised tPA.  (A) Normal 

healthy lung with no detectable fibrin deposits.  (B) During development of ARDS the equilibrium between 

coagulation and fibrinolysis is disrupted resulting in fibrin deposits in the lung parenchyma and fibrin-

platelet microthrombi in the pulmonary vasculature.  This promotes respiratory dysfunction and can lead 

to a requirement for respiratory support.  (C) Administration of nebulised tPA will target the 

bronchioalveolar space tipping the balance of plasminogen activation in favour of fibrinolysis allowing 

clearance of  fibrin from the lung parenchyma thereby improving respiratory function and oxygenation in 

COVID-19 patients.  
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